Lunasin benefit, dosage, source, review
Feb 20 2014 by
Ray Sahelian, M.D.

Lunasin is a peptide isolated from soy that has 43 amino acids. Lunasin is thought to have anti-cancer properties. I have not come across any human trials and therefore it is difficult to say how useful this peptide will end up being in clinical practice.

Lunasin is a peptide that suppresses chemical carcinogen-induced transformation in mammalian cells and skin carcinogenesis in mice. Since the lunasin gene was cloned from soybean and the chemically synthesized form of the lunasin peptide has been used in experiments conducted so far, the isolation of lunasin from other natural sources and testing of its biological properties have been carried out. Lunasin has now been isolated from barley, a newly found rich source of the peptide.

Effect on inflammation
A compound often discarded as waste in soy-processing plants may stop inflammation, and protect against chronic diseases like diabetes and heart disease. A soy protein called lunasin was found to significantly reduce levels of the pro-inflammatory compound interleukin-6.

Cancer
Cancer Immunol Immunother. 2014 March. Soypeptide lunasin in cytokine immunotherapy for lymphoma.

Lunasin suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines.
Nutr Cancer. 2003.
Lunasin, a novel and promising chemopreventive compound isolated from soybean cotyledon, is a 43-amino acid peptide that contains a -RGD-cell adhesion motif followed by 8 aspartic acid residues at the carboxyl end and a structurally conserved helix region. We showed previously that lunasin peptide applied exogenously reduces foci formation in mouse fibroblast cells treated with chemical carcinogens and inhibits skin tumorigenesis induced by chemical carcinogens in mice when applied topically. In this study, lunasin peptide applied to cell culture suppresses foci formation in E1A-transfected mouse fibroblast NIH 3T3 cells. Within 18 h of exogenous application, lunasin internalizes into the cell and localizes in the nucleus. In an initial study of genes affected by lunasin, the peptide increases p21 protein levels fivefold in cells transfected with E1A but not in untransfected cells. In contrast to its inhibitory effects on cell transformation, lunasin has no effect on growth of imicroMortalized (nontumorigenc) and established cancer cells. This is the first report that lunasin suppresses transformation of mamicroMalian cells induced by an oncogene (E1A) in addition to chemical carcinogens.

The anticarcinogenic potential of soybean lectin and lunasin.
Nutr Rev. 2003.
Cancer is one of the leading causes of death worldwide, generally exceeded only by cardiovascular disease in the developed world. The number of people diagnosed with cancer within the next few decades is expected to double. There will therefore be increased demand for novel diagnostic and medical therapies that use new non-traditional sources. Soybeans contain a variety of anticarcinogenic phytochemicals. Recently, there has been increased interest in the potential health benefits of bioactive polypeptides and proteins from soybeans, including lunasin and lectins. Lunasin is a polypeptide that arrests cell division and induces apoptosis in malignant cells. Lectins are glycoproteins that selectively bind carbohydrates; lectins are used in medicine in a variety of new applications. Additional research, including clinical trials, should continue to examine and elucidate the therapeutic effects, nutritional benefits, and toxic consequences of commonly ingested soybean lectins and lunasin.

Lunasin study
Lunasin concentration in different soybean genotypes, commercial soy protein, and isoflavone products.
J Agric Food Chem. 2004.
Information on lunasin concentration of soybean cultivars and commercial soy proteins would be useful in developing lunasin-enriched cultivars and soy products. We report the development of an enzyme-linked immunosorbent assay (ELISA) method to identify lunasin and quantify the variations in concentration in 144 selected, diverse soybean accessions from the U.S. Department of Agriculture Soybean Germplasm Collection, several commercially available soy protein fractions and isoflavone-enriched products. With synthetic lunasin and monoclonal antibody, ELISA shows a linear concentration range of 24-72 ng/mL, good reproducibility, a detection limit of 8 ng/mL, and a recovery of 90% on spiked soy samples. Lunasin concentrations in the tested materials range from 0.10 to 1.33 g/100 g flour. Differences that exceeded 100% have been observed among accessions of similar maturity that were grown in the same environment, indicating that genetic differences in soybeans exist for lunasin. Soy protein concentrate, isolate, and hydrolyzate contain 2.8 , 3.75, and 4.4 g lunasin/100 g flour, respectively, while soy flour and soy flakes contain 1.24 g lunasin/100 g flour. Isoflavone-enriched products contain very little or no lunasin. The wide range of lunasin concentrations within the Glycine max species indicates that the levels of this important bioactive peptide can be genetically manipulated. Furthermore, soy isolates and hydrolyzed soy proteins contain the highest concentrations of lunasin.

Characterization of lunasin isolated from soybean.
J Agric Food Chem. 2003.
Lunasin is a novel and promising chemopreventive peptide from soybean. We have shown previously that lunasin suppresses transformation of mammalian cells caused by chemical carcinogens and inhibits skin carcinogenesis in mice when applied topically. Although the lunasin gene was cloned from soybean, all experiments carried out so far in our lab have used synthetic lunasin and therefore there is no detailed description of natural lunasin isolated from soybean. We report here the first characterization of soybean lunasin that includes definitive identification by mass peptide mapping, partial purification, and measurement of bioactivities of the various purified fractions and protein expression in the developing seed. The identity of lunasin in the seed extracts was established by Western blot analysis and mass spectrometric peptide mapping. All lunasin fractions partially purified by anion exchange and immunoaffinity column chromatography suppress colony formation induced by the ras-oncogene and inhibit core H3-histone acetylation. During seed development, lunasin peptide appears 5 weeks after flowering and persists in the mature seed. Western blot analysis of different soybean varieties and commercially available soy proteins shows the presence of the peptide in varying amounts. These results demonstrate the feasibility of producing large quantities of natural lunasin from soybean for animal and human studies.

Barley lunasin suppresses ras-induced colony formation and inhibits core histone acetylation in mammalian cells.
J Agric Food Chem. 2002.
Lunasin is a novel peptide originally identified in soybean that suppresses chemical carcinogen-induced transformation in mammalian cells and skin carcinogenesis in mice. Since the lunasin gene was cloned from soybean and the chemically synthesized form of the lunasin peptide has been used in experiments conducted so far, the isolation of lunasin from other natural sources and testing of its biological properties have not been carried out. We report here the isolation, purification, and biological assay of lunasin from barley, a newly found rich source of the peptide. The identity of lunasin was established by Western blot analysis and mass spectrometric peptide mapping of the in-gel tryptic digest of the putative protein band. Lunasin was partially purified with anion exchange and immunoaffinity chromatography. The crude and partially purified lunasin from barley suppressed colony formation in stably ras-transfected mouse fibroblast cells induced with IPTG. These fractions also inhibited histone acetylation in mouse fibroblast NIH 3T3 and human breast MCF-7 cells in the presence of the histone deacetylase inhibitor sodium butyrate.

Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation.
Cancer Res. 2001.
Lunasin is a unique 43-amino acid soybean peptide. We demonstrated previously that transfection of mammalian cells with the lunasin gene arrests mitosis, leading to cell death. Here we show that exogenous application of the lunasin peptide inhibits chemical carcinogen-induced transformation of murine fibroblast cells to cancerous foci. To elucidate its mechanism of action we show that lunasin: (a) internalizes in the cell through the RGD cell adhesion motif; (b) colocalizes with hypoacetylated chromatin; (c) binds preferentially to deacetylated histone H4 in vitro; and (d) inhibits histone H3 and H4 acetylation in vivo in the presence of a histone deacetylase inhibitor. These results suggest a mechanism whereby lunasin selectively induces apoptosis, mostly in cells undergoing transformation, by preventing histone acetylation. In support of this, lunasin selectively induces apoptosis in E1A-transfected cells but not in nontransformed cells. Finally, in the SENCAR mouse skin cancer model, dermal application of lunasin (250 microg/week) reduces skin tumor incidence by approximately 70%, decreases tumor yield/mouse, and delays the appearance of tumors by 2 weeks relative to the positive control. These results point to its role as a new chemopreventive agent that functions possibly via a chromatin modification mechanism.

Questions
Q. Are lunasin and beta sitosterol similar?
     A. No. Lunasin is a peptide whereas beta sitosterol is a phytosterol.