Sirtuin or Sir2 proteins are a class of proteins that possess either mono-ribosyltransferase, or deacylase activity, including deacetylase
March 4 2016

There is a family of enzymes called sirtuins. They are controlled by genes called SIRT1, SIRT2, SIRT3 and SIRT4.and so on.

Stimulating SIRT1 can help yeast cells live longer. Enzymes controlled by these genes help preserve the mitochondria. SIRT3 and SIRT4 genes make proteins that go into mitochondria.

Fasting raises levels of another protein called NAD. This, in turn, activates SIRT3 and SIRT4 in the mitochondria of the cell and these help keep the mitochondria youthful.

Proc Natl Acad Sci U S A. 2013. Neuroprotective Sirtuin ratio reversed by ApoE4. The canonical pathogenesis of Alzheimer's disease links the expression of apolipoprotein E ε4 allele (ApoE) to amyloid precursor protein (APP) processing and Aβ peptide accumulation by a set of mechanisms that is incompletely defined. The development of a simple system that focuses not on a single variable but on multiple factors and pathways would be valuable both for dissecting the underlying mechanisms and for identifying candidate therapeutics. Here we show that, although both ApoE3 and ApoE4 associate with APP with nanomolar affinities, only ApoE4 significantly (i) reduces the ratio of soluble amyloid precursor protein alpha (sAPPα) to Aβ; (ii) reduces Sirtuin T1 (SirT1) expression, resulting in markedly differing ratios of neuroprotective SirT1 to neurotoxic SirT2; (iii) triggers Tau phosphorylation and APP phosphorylation; and (iv) induces programmed cell death. We describe a subset of drug candidates that interferes with the APP-ApoE interaction and returns the parameters noted above to normal. Our data support the hypothesis that neuronal connectivity, as reflected in the ratios of critical mediators such as sAPPα:Aβ, SirT1:SirT2, APP:phosphorylated (p)-APP, and Tau:p-Tau, is programmatically altered by ApoE4 and offer a simple system for the identification of program mediators and therapeutic candidates.

J Immunol Res. 2016. Sirtuins Link Inflammation and Metabolism. Sirtuins (SIRT), first discovered in yeast as NAD+ dependent epigenetic and metabolic regulators, have comparable activities in human physiology and disease. Mounting evidence supports that the seven-member mammalian sirtuin family (SIRT1-7) guard homeostasis by sensing bioenergy needs and responding by making alterations in the cell nutrients. Sirtuins play a critical role in restoring homeostasis during stress responses. Inflammation is designed to "defend and mend" against the invading organisms. Emerging evidence supports that metabolism and bioenergy reprogramming direct the sequential course of inflammation; failure of homeostasis retrieval results in many chronic and acute inflammatory diseases. Anabolic glycolysis quickly induced (compared to oxidative phosphorylation) for ROS and ATP generation is needed for immune activation to "defend" against invading microorganisms. Lipolysis/fatty acid oxidation, essential for cellular protection/hibernation and cell survival in order to "mend," leads to immune repression. Acute/chronic inflammations are linked to altered glycolysis and fatty acid oxidation, at least in part, by NAD+ dependent function of sirtuins. Therapeutically targeting sirtuins may provide a new class of inflammation and immune regulators.